Extensions 1→N→G→Q→1 with N=C2 and Q=C23.65C23

Direct product G=N×Q with N=C2 and Q=C23.65C23
dρLabelID
C2×C23.65C23128C2xC2^3.65C2^3128,1023


Non-split extensions G=N.Q with N=C2 and Q=C23.65C23
extensionφ:Q→Aut NdρLabelID
C2.1(C23.65C23) = C24.625C23central extension (φ=1)128C2.1(C2^3.65C2^3)128,167
C2.2(C23.65C23) = C24.626C23central extension (φ=1)128C2.2(C2^3.65C2^3)128,168
C2.3(C23.65C23) = C42.61Q8central extension (φ=1)128C2.3(C2^3.65C2^3)128,671
C2.4(C23.65C23) = C24.631C23central stem extension (φ=1)128C2.4(C2^3.65C2^3)128,173
C2.5(C23.65C23) = C24.632C23central stem extension (φ=1)128C2.5(C2^3.65C2^3)128,174
C2.6(C23.65C23) = C24.634C23central stem extension (φ=1)128C2.6(C2^3.65C2^3)128,176
C2.7(C23.65C23) = C42.27Q8central stem extension (φ=1)128C2.7(C2^3.65C2^3)128,672
C2.8(C23.65C23) = C87(C4⋊C4)central stem extension (φ=1)128C2.8(C2^3.65C2^3)128,673
C2.9(C23.65C23) = C85(C4⋊C4)central stem extension (φ=1)128C2.9(C2^3.65C2^3)128,674
C2.10(C23.65C23) = C4.(C4×Q8)central stem extension (φ=1)128C2.10(C2^3.65C2^3)128,675
C2.11(C23.65C23) = C8⋊(C4⋊C4)central stem extension (φ=1)128C2.11(C2^3.65C2^3)128,676
C2.12(C23.65C23) = C42.62Q8central stem extension (φ=1)32C2.12(C2^3.65C2^3)128,677
C2.13(C23.65C23) = C42.28Q8central stem extension (φ=1)32C2.13(C2^3.65C2^3)128,678
C2.14(C23.65C23) = C42.29Q8central stem extension (φ=1)128C2.14(C2^3.65C2^3)128,679
C2.15(C23.65C23) = C42.30Q8central stem extension (φ=1)128C2.15(C2^3.65C2^3)128,680
C2.16(C23.65C23) = C42.31Q8central stem extension (φ=1)128C2.16(C2^3.65C2^3)128,681
C2.17(C23.65C23) = C42.430D4central stem extension (φ=1)64C2.17(C2^3.65C2^3)128,682
C2.18(C23.65C23) = M4(2).5Q8central stem extension (φ=1)64C2.18(C2^3.65C2^3)128,683
C2.19(C23.65C23) = M4(2).6Q8central stem extension (φ=1)64C2.19(C2^3.65C2^3)128,684
C2.20(C23.65C23) = M4(2).27D4central stem extension (φ=1)324C2.20(C2^3.65C2^3)128,685

׿
×
𝔽